DE 1.3 - Electronics 1

Lecture 18 – 2017 Past Exam Paper

Prof Peter Y K Cheung
Dyson School of Design Engineering
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/ E-mail: p.cheung@imperial.ac.uk

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 1

Q1 - voltage divider circuits (79%)

1. Find the value of V_1 and V_2 for the circuit shown in Figure 1.

Find equivalent resistance of 10k // (1.25k+1.25k) = 2

V1 is found by considering 2k and 1k as simple voltage divider. This gives V1 = 2V.

V2 is voltage divider of V1 by two 1.25k resistor. Therefore V2 = 1V

Q2 - Resistor network & Equivalent resistor

2. For the circuit shown in *Figure 2*, derive the equivalent resistance R_T between nodes A and B.

4k 10k B

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 3

Q2 - Resistor network & Equivalent resistor (89%)

Q3 – Thévenin Equivalent Circuit

3. An electronic circuit with two terminals A and B is known to contain a battery and a network of resistors. The voltage between A and B is measured to be 6.73V when a $1k\Omega$ resistor is connected between the two terminals. The voltage drops to 6.17V when the resistor is reduced to 200Ω .

Derive the Thévinen equivalent circuit for the electronic circuit.

[10]

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 5

Q3 - Thévenin Equivalent Circuit (68%)

3. An electronic circuit with two terminals A and B is known to contain a battery and a network of resistors. The voltage between A and B is measured to be 6.73V when a $1k\Omega$ resistor is connected between the two terminals. The voltage drops to 6.17V when the resistor is reduced to 200Ω .

This gives Eq 1: $6.73 = \frac{1}{1 + R_{th}} V_{th} \Rightarrow 6.73 + 6.73 R_{th} = Vth$

This gives Eq 2: $6.17 = \frac{0.2}{0.2 + R_{th}} V_{th} \Rightarrow 1.234 + 6.17 R_{th} = 0.2 Vth$ $\Rightarrow 6.17 + 30.85 R_{th} = Vth$

Eq 1 – Eq 2 = 0.55 $0.56 = 24.12 R_{th}$ ⇒ $R_{th} = 0.0232$ or 23.2Ω.

Therefore $Vth = 6.17 + 30.85 \times 0.0232 = 6.886V$.

Q4 - Principle of superposition (82%)

4. The circuit shown in *Figure 4* has a 4.5V voltage source and a 20mA current source. Using the method of nodal analysis, find the value of V_X and V_Y .

Apply KCL at node X:

 $\frac{X-4.5}{3} + \frac{X}{3} + \frac{X-Y}{1} = 0$ $\Rightarrow 5X - 3Y = 4.5$ Apply KCL at node Y:

$$\frac{Y - X}{1} + \frac{Y}{2} - 20 = 0$$

$$\Rightarrow -2X + 3Y = 40$$

Therefore, 3X = 44.5, or X = 14.83VY = 23.2V

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 7

Q5 a & b - Transient behaviour of RC circuit

- 5. In the circuit shown in *Figure* 5, the switch is at position 2 (i.e. opened) for a long time before moving to position 1 (i.e. closed) at time t = 0 sec.
 - (a) What is the capacitor voltage $\underline{v}_{C}(t)$ at t = 0 sec just before the switch is closed?
 - (b) What is the final value of v_C for $t \to \infty$? 6V $\downarrow 0.1\mu$ $\downarrow 0.1\mu$ $\downarrow v_C(t)$
 - (a) Switch in position 2 means that the circuit was NOT connected to the voltage source. $v_c(0) = 0$.
 - (b) When switch is closed, capacitor will charge up to value across 20k resistor as voltage divider. Therefore $v_C(\infty) = (20/(10+20)) \times 6V = 4V$.

Q5 c & d – Transient behaviour of RC circuit (50%)

- (c) What is the time constant of the function $y_c(t)$ for $t \ge 0$ sec?
- (d) Derive the equation for v_C as a function of time t.

(c) Equivalent resistance seen by capacitor when switch is closed is:

$$10k // 20k = 6.67k$$
.

Therefore time constant = $RC = 6.67 \times 10^3 \times 0.1 \times 10^{-6} = 6.67 \times 10^{-4}$.

(d)
$$V_c(t) = 4(1 - e^{-1.5 \times 10^3 t})$$

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 9

Q6 – Complex impedances

- 6. Figure 6 shows a RLC circuit driven by a sinusoidal voltage source V_S with amplitude of 10V and a frequency of ω .
 - (i) Derive the complex impedance of the combined RLC circuit as a function of ω .

(i)
$$Z = R + j\omega L + \frac{1}{j\omega C} = 10.5 + j(0.2 \times 10^{-3}\omega - \frac{10^7}{\omega})$$

Q6 – Complex impedances (47%)

(ii) Hence, or otherwise, derive the amplitude of the signal $V_R(t)$ across the resistor at DC and at signal frequency of 40 kHz.

(ii) Use voltage divider formula,

$$|V_R| = 10 \times \frac{10.5}{|z|}$$

at 40kHz, $\omega = 251327 \text{ rad/sec}$

Therefore

$$|Z| = |10.5 + \underline{j}(50.3 - 39.8)| = |10.5 + \underline{j}10.5| = 14.95.$$

Therefore,
$$|V_R| = 10 \times \frac{10.5}{|Z|} = 7.07V$$

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 11

Q7 – Digital number representation (83%)

7. Given that the decimal code for the ASCII character 'A' is 65, and <u>assuming that</u> all numbers are represented using 8 bits, complete the missing entries that are not shaded in the following table (*Figure 7*). (No marks will be awarded for this question unless you show how the solutions are derived.)

Hexadecimal	Binary	Unsigned Decimal	ASCII
4C			
		165	

Hexadecimal	Binary	Unsigned Decimal	ASCII
4C	01001100	76	"L"
A 5	10100101	165	

Q8 – Operational Amplifier (i)

- 8. Figure 8a shows a two-stage amplification system that detects the presence or absence of a 20kHz ultrasonic signal through the ultrasound senor. The range of the sensor signal V_U is 20mV peak-to-peak. The required output signal V_O is 4V peak-to-peak.
 - (i) Using a single supply dual operational amplifier integrated circuit with a Gain-Bandwidth Product of 800kHz, determine with justification the gain values for the two-stage of amplification.

(i) Total gain require = 4V / 20mV = 200.

Since GBP = 800,000, the maximum gain at 20kHz would be 40.

Therefore, make A1 = 20, and A2 = 10 would work well.

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 13

Q8 – Operational Amplifier (ii)

(ii) Figure 8b shows the circuit for stage 2 of the amplification system. Assuming that the operational amplifier uses a +5V supply and is able to provide rail-to-rail output. Prove that the gain of this amplifier is given by:

$$V_{out} = -\frac{R2}{R1}(V_{in} - 2.5) + 2.5$$

The circuit works like this. Voltage at -ve input is 2.5V. Apply KCL at this node give:

$$\frac{V_{out} - 2.5}{R2} = \frac{-(V_{in} - 2.5)}{R1}$$

$$\Rightarrow V_{out} = -\frac{R2}{R1}(V_{in} - 2.5) + 2.5$$

Q8 – Operational Amplifier (iii) (54%)

(iii) Hence or otherwise, design the circuit for your answer to Question 8 (i).

If A2 = 10, one solution is R2 = 100k, R1 = 10k.

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 15

Q9 - PWM and motor speed control (i)

- 9. Figure 9 shows the relationship between the speed of a DC motor (in revolutions per minute or rpm) and the average voltage across the motor windings.
 - (i) Explain the advantage of controlling the speed of a DC motor with a pulse-width modulation (PWM) signal instead of a DC voltage.

Q9 – PWM and motor speed control (ii) (48%)

- 9. Figure 9 shows the relationship between the speed of a DC motor (in revolutions per minute or rpm) and the average voltage across the motor windings.
 - (ii) A robot car uses four DC motors with a no-load speed vs drive voltage curve as shown in *Figure 9*. The wheels of the car have a diameter of 6 cm. What is the duty-cycle of the driving PWM signal if the car is to travel at a speed of 5m/sec? State any assumption used.

6cm wheel provides 18.85cm/rev.

Therefore 5m/sec speed requires 5/0.1885 = 26.52 rev/sec = 1591 rpm.

 $\underline{Therefore} \ \underline{Vmotor} = 5V \ x \ 1591/2000 + 1V = 4.98V.$

Hence,

Duty cycle = 4.98/6 = 83%.

PYKC 19 June 2018 DE 1.3 - Electronics Lecture 18 - Slide 17